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Abstract
We propose a Mathematica package which allows us to determine all the
classes of three-dimensional subalgebras (TDS) of a simple Lie algebra. The
programming of the package is based on the theory of semisimple subalgebras
of simple Lie algebras. We summarize the main points of this theory, which
leads to an algorithm for the construction of the classes of TDS. A particular
emphasis is laid on the construction of the exceptional TDS of Dn. The package
Decompositions.m implements this algorithm to give all the TDS of the
classical simple Lie algebras, principal and nonprincipal. The package provides
several functions which characterize the three-dimensional embeddings such
as, for example, the set of spins of a decomposition, the defining vector,
the pi-system of roots, the generators of the TDS and the generators of each
decomposition.

PACS numbers: 02.20.Sv, 11.25.Hf, 02.70.Wz

1. Introduction

The classification of the semisimple subalgebras of the simple Lie algebras is of major
importance for the study of the symmetries of the physical systems. In particular, the study of
the embeddings of Lie subalgebras in algebras of a higher rank has become of great interest
in the search of possibilities to extend the symmetries of some models to larger groups of
symmetries.

In two-dimensional field theories and gravitation theories, the fundamental work of
Zamolodchikov [1], Belavin and Polyakov [2] revealed the existence of additional symmetries,
which extend the symmetry algebra of the theory, the Virasoro algebra. Hence, generalizations
of these theories were introduced as higher spin extensions of the Virasoro algebra, known as
W -algebras.
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A systematic method to construct W -algebras is based on the so-called Hamiltonian
reduction of Drinfeld–Sokolov [3]. In this approach, we can construct a W -algebra for any
embedding of SL2 in a Lie algebra. For a given Lie algebra there are several inequivalent
embeddings. The first examples were the two W -algebras, associated with the two classes
of three-dimensional subalgebras (TDS) of the Lie algebra SL3. The standard Wn algebras
correspond to the principal embedding of SL2 in the Lie algebras SLn and contain primary
fields of conformal dimensions (or spins) 3, 4, . . . , n and the energy–momentum tensor, which
is a quasi-primary field, of conformal dimension 2. However, there are many other W -algebras
which can also be obtained from any embedding of SL2 in a Lie algebra.

It is then clear that the three-dimensional embeddings in a Lie algebra play a central role
in the theory of W -algebras. Therefore, we propose in this paper a Mathematica package,
which allows us to determine all the classes of TDS of a simple Lie algebra and to calculate
the decompositions of simple Lie algebras with respect to SL2 embeddings. An application of
this package to the theory of W -gravity, with explicit examples of calculations, can be found
in [4], where zero curvature equations are solved to obtain the anholomorphicity conditions
for primary fields. The programming of this package is based on the theory of semisimple
subalgebras of simple Lie algebras, introduced by Dynkin [5].

In section 2 we introduce some necessary basic elements and notation concerning the
simple Lie algebras. We present the essential points of the theory of Dynkin, which leads to an
algorithmic approach for the construction of all classes of three-dimensional embeddings in a
Lie algebra. Particular emphasis is laid, in section 2.2.3, on the construction of the exceptional,
nonprincipal TDS of the Lie algebras Dn.

In section 3 we present, in an algorithmic manner, the construction of the generators of a
given Lie algebra, for each of its decompositions with respect to the TDS.

Section 4 is a user’s guide for the Mathematica package Decomposition.m. For the
aspects concerning the programming in Mathematica we refer to [6, 7].

Results have been obtained by direct calculus for Lie algebras of rank up to 4 in [8] and
up to 6 in [9]. The package Decomposition.m recovers all these results and allows us to
obtain new ones, for Lie algebras of a higher rank, the only limitations being the computer
resources.

More precisely, the first part of the program, based on theoretical aspects presented in
section 2, allows us to calculate all the pi-systems of a simple Lie algebra (maximal and
nonmaximal), to determine the regular subalgebras associated with these pi-systems and to
calculate all the defining vectors of the three-dimensional embeddings.

The second part of the program applies the theory presented in section 3, to determine
the spin content of each decomposition, the generators and the structure constants of the Lie
algebra, in each decomposition.

2. Subalgebras of a simple Lie algebra

We recall some elements of the classical simple Lie algebra theory, which are used in
programming the Mathematica package Decompositions.m.

We consider a Lie algebra g of rank n and dimension d and a basis of this algebra which
consists of n Cartan generators {H1, . . . , Hn} and d − n root generators {Eα1 , . . . , Eαd−n

}, half
of which are positive root generators and half are negative root generators, frequently denoted
by Fα = E−α .
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The Cartan generators Hi span the maximal Abelian subalgebra h of g. The subspaces
spanned by root vectors Eα , denoted by gα , are h-invariant:

[H,Eα] = α(H)Eα [H,Fα] = −α(H)Fα ∀ H ∈ h.

In these relations, the applications α ∈ h∗ are the roots of the Lie algebra g. We denote � the
set of all roots (positive and negative) and �0 the subset of simple roots which form a basis in
h∗.

On g is defined the symmetric bilinear Killing form,

K(x, y) = Tr(adx · ady) ∀ x, y ∈ g (1)

where ad is the adjoint application, adx(y) = [x, y]. This g-invariant form is nondegenerate
on h and defines, up to a constant c, a scalar product on h:

〈x, y〉 = cK(x, y) ∀ x, y ∈ h.

This scalar product identifies the Cartan subalgebra h with its dual h∗ by associating with
each element α ∈ h∗ the element Hα ∈ h such that α(H) = 〈Hα,H 〉, for all H ∈ h. We
consider Cartan generators as elements of h which are associated with the simple roots.

The scalar product on h induces a scalar product on h∗, defined as

〈α, β〉 = 〈Hα,Hβ〉 ∀ α, β ∈ h∗. (2)

These scalar products on h and h∗ are determined by the Killing form, up to the constant c,
which is fixed, as usual, by the condition that the square of the length of a long root is equal
to 2. This normalization of the scalar product allows us to give an Euclidean representation of
the roots. Hence, the scalar product on h∗ is identified with the Euclidean scalar product. In
the Mathematica package we use this identification to compute scalar products between roots.

We consider h∗
0 the set of elements in h∗ expressible as real linear combinations of the

roots of g, also called the idempotent of g, which has the same dimension as the Cartan
subalgebra [10]. We can define an order relation on h∗

0, compatible with the vectorial space
structure. Every such ordering determines a subsystem of positive roots and every system of
simple roots determines an ordering on h∗

0.

2.1. Regular subalgebras and S-subalgebras

To solve the problem of finding the subalgebras of a Lie algebra it is sufficient to determine all
the maximal subalgebras. Then, the other subalgebras can be obtained in a recursive manner.
In the first approach, all subalgebras can be separated into two disjoint classes: regular
subalgebras and S-subalgebras. Hence, every subalgebra of a simple Lie algebra is either
a regular subalgebra, an S-subalgebra, or an S-subalgebra of one of its proper regular
subalgebras.

The theory developed by Dynkin to solve the problem of finding all the classes of TDS
of a simple Lie algebra can be summarized in two essential points:

• It gives all the regular subalgebras of a simple Lie algebra
• It shows that all three-dimensional S-subalgebras of a simple Lie algebra are principal,

up to a few exceptions, which occur in the cases of Lie algebras Dn,E6,7,8.

We present hereafter the main definitions and results of this theory, which allows us to
construct an algorithm for finding all TDS of a given simple Lie algebra.

Definition 2.1. Let g be a simple Lie algebra and g̃ ⊆ g a Lie subalgebra, with the canonical
decomposition:

g̃ = h̃ ⊕
∑

α̃∈�̃

g̃α̃ .
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The Lie subalgebra g̃ is called regular if there is a canonical decomposition of g,

g = h ⊕
∑

α∈�

gα

such that the Cartan subalgebra h̃ ⊆ h and the root system �̃ ⊆ �.
A S-subalgebra of g is a subalgebra which is not contained in any proper regular

subalgebra of g.

The previous definition is given in terms of the complete system of roots, but for our
purpose it is more convenient to use the system of simple roots. According to the general
properties of simple roots, if α̃ and β̃ are simple roots of the subalgebra g̃, then α̃ − β̃ is no
longer a root of g̃. On the other hand, α̃ − β̃ cannot be a root of g, either. Otherwise, from
the properties of subalgebras, the root vector corresponding to the root α̃ − β̃ should be an
element of the subalgebra g̃ and it is not since α̃ − β̃ is not a root of g̃.

Therefore, the system of simple roots of a regular subalgebra is a particular subset of the
root system � of g, called a pi-system, which has the following properties.

Definition 2.2. Let � be the root system of a Lie algebra g. A subset � of the root system �

is called a pi-system if

(1) for all α, β ∈ �,α − β �∈ �

(2) � is a linearly independent system.

More precisely, theorem 5.1 of [5] shows that the regular subalgebras of g are in one
to one correspondence with the pi-systems � of � and are spanned by the generators
{Eα, Fα,Hα | α ∈ �}. Therefore, the problem of finding regular subalgebras of g comes
down to the problem of finding all the pi-systems of the complete system of roots � of
g. Several results of [5] lead to an algorithmic approach to the problem of finding all the
pi-systems for a given Lie algebra. This approach presents three steps:

(1) Firstly, we have to determine all the maximal pi-systems.
For a Lie algebra g of rank n, all the pi-systems with n elements can be obtained by an
algorithmic construction, performing some elementary transformations on the system of
simple roots of g. An elementary transformation of a pi-system consists of three steps:

(a) We start with a pi-system of simple roots. It determines an order relation on the root
system �, with respect to which the elements of the pi-system are positive. Then,
we add to the pi-system the smallest root of � with respect to this pi-system. This
smallest root δm is defined as the linear combination of the elements of the pi-system,
with negative integer coefficients, with the property δm − α �∈ �, for all the roots α

of the pi-system. The resulting system of roots, called an extended system, satisfies
the condition (1) of definition 2.2, but not condition (2).

The Dynkin diagram of the extended system is called an extended diagram and
satisfies the construction rules for Dynkin diagrams.

(b) For the extended system we remove arbitrarily one of the original elements. All
the n subsets obtained in this way have n elements and also respect condition (2).
Therefore, they are pi-systems.

(c) The preceding procedure must be applied now to each one of the n diagrams with
n-points obtained in step (b). These n-point diagrams can present several connecting
parts. In this case, the procedure must be applied to each connecting part.

This process is applied recursively, until no new pi-system is obtained.
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Theorem 5.3 of Dynkin [5] shows that all the pi-systems with n elements can be
obtained by these elementary transformations starting from a system of simple roots
of g.

(2) Secondly, we have to determine all the nonmaximal pi-systems.
It is obvious that every subset of a pi-system is also a pi-system and, from the

theorem 5.2 of Dynkin [5], any pi-system with less then n elements can be extended
to a maximal pi-system (with n elements). Therefore, for a Lie algebra of rank n, it is
sufficient to find all the pi-systems with n elements and then to take all the subsets with r
elements, r < n. In this way, we can construct all the pi-systems with r elements, which
correspond to regular subalgebras of rank r.

(3) Finally, on the set of all pi-systems, obtained by iterative application of the first two steps,
we must eliminate those which are Weyl equivalent, since they correspond to conjugate
subalgebras.

Theorems 5.2 and 5.3 of [5] show that this algorithm gives all the possible pi-systems
of simple roots for regular semisimple subalgebras of a simple Lie algebra, starting from its
system of simple roots.

For the classical Lie algebras An,Bn, Cn,E6, F4,G2, to each pi-system given by this
algorithm corresponds one class of regular semisimple subalgebra. Exceptions occur in the
case of regular semisimple subalgebras of Dn,E7 and E8, where for some particular pi-systems
two classes of regular subalgebras correspond.

2.2. Three-dimensional subalgebras

All complex semisimple three-dimensional subalgebras are isomorphic with the Lie algebra
SL2, with the canonical generators: H,E,F and commutation relations:

[H,E] = 2E (3)

[H,F ] = −2F (4)

[E,F ] = H. (5)

These subalgebras are characterized by the element f ∈ h�, associated with H by the scalar
product (2), called the defining vector of the three-dimensional subalgebra. Theorem 8.1 of
[5] shows that two TDS of a semisimple algebra are conjugated iff their defining vectors are
Weyl conjugate. In our package, we do not use this criterion of conjugacy, but another one,
based on the characteristic of the TDS.

To define the characteristic diagram, let us consider f as the defining vector of a three-
dimensional subalgebra of g. This vector determines an order relation on the idempotent h∗

0,
if we consider positive, those roots of g which have positive scalar products with f . From
these positive roots we choose a system of simple roots, with respect to this ordering, for the
Lie algebra g. With these simple roots we construct the Dynkin diagram of the Lie algebra g
and we associate with each point of the diagram the scalar product of the defining vector with
the corresponding simple root. The diagram with number labels on the points, obtained in this
way, is called the characteristic diagram of the three-dimensional subalgebra in g.

The labels which appear in a characteristic diagram can be one of the integers 0, 1 or
2. A three-dimensional subalgebra is called principal if all the labels of the corresponding
characteristic diagram are equal to 2.

Theorem 8.2 [5] shows that two three-dimensional subalgebras of a semisimple algebra
are conjugated iff their characteristics coincide.
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Figure 1. Characteristic diagrams of the nonprincipal TDS of E6, E7 and E8.

The classification of all semisimple subalgebras of a simple algebra g shows that every
three-dimensional subalgebra of g is either:

(a) an S-subalgebra of g,
(b) an S-subalgebra of one of the proper regular subalgebras g̃ of g or
(c) a regular subalgebra of g.

Concerning case (a), the theorems 9.2 and 9.3 of [5] show that all three-dimensional
S-subalgebras of An,Bn, Cn, F4 and G2 are principal.

For the Lie algebras Dn, beside the principal three-dimensional S-subalgebras, there
are also [(n − 2)/2] classes of exceptional three-dimensional S-subalgebras, which are not
principal (we denote by [x] the integer part of x). For each r = 1, . . . , [(n − 2)/2], we denote
by Dn−2r

n the corresponding algebra of type Dn including the exceptional three-dimensional
S-subalgebra. Its characteristic diagram is given in figure 2 and contains labels 0 at the
positions n − 2r, n − 2(r − 1), . . . , n − 2 and labels 2 elsewhere.

For the Lie algebra E6, there is one exceptional class of three-dimensional S-subalgebras,
besides the principal one, and for the Lie algebras E7, E8 there are two such exceptional
classes, with characteristics given in figure 1.

In case (b), the three-dimensional S-subalgebra of a simple regular subalgebra g̃ of g is
also principal in g̃, if g̃ is of type An,Bn, Cn, F4 or G2. As in case (a), if the regular subalgebra
is of type Dn or E, then, beside the principal TDS, there are also some exceptional TDS, which
are not principal.

For the semisimple proper regular subalgebras, which decompose as the sum of simple
ideals, g̃ = ⊕gi , we must find the three-dimensional subalgebras Ti of each simple ideal and
their defining vectors fi . Then, T = ⊕Ti is a three-dimensional subalgebra of g̃ and f = ∑

fi

is the corresponding defining vector.
Due to this result it is sufficient to describe the three-dimensional subalgebras (principal

and nonprincipal) of the classical simple Lie algebras.

2.2.1. Principal three-dimensional subalgebras. Let g be one of the classical simple Lie
algebras, � its system of roots and � the system of simple roots of g. For the algebra g we
consider the canonical decomposition: g = h ⊕ ∑

α∈� gα, where h is the Cartan subalgebra
and gα are the root spaces of g.

The construction of the generators H,E and F of the principal three-dimensional
subalgebra of g is based on the following result.
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Figure 2. The diagram of the exceptional three-dimensional subalgebra of Dn−2r
n .

Theorem 2.3. Let f ∈ h� with the property

〈f, αj 〉 = 2 (6)

for all the simple roots αj ∈ � of g. Let H ∈ h be the Cartan element associated with f

by the scalar product. Then, for any E ∈ ∑
α∈� gα and any F ∈ ∑

α∈� g−α , H verifies the
commutation relations (3) and (4) of SL2.

The element f of h�, with the property (6), is the defining vector of the principal three-
dimensional subalgebra of g. The defining vector is written in the basis of simple roots as
f = ∑

αi∈� xiαi , where the coefficients xi are solutions of the system (6). Then the Cartan
generator H of the principal TDS of g is

H =
∑

αi∈�

xiHαi
.

The root generators E and F are linear combinations of root generators of simple roots and
simple negative roots, respectively,

E =
∑

αi∈�

uiEαi
F =

∑

αi∈�

viFαi
.

Since
[
Eαi

, Fαj

] = δij

〈
Eαi

, Fαj

〉
Hαi

for all simple roots αi, αj ∈ �, equation (5) is verified if
the coefficients ui and vi satisfy

uivi

〈
Eαi

, Fαi

〉 = xi ∀ αi ∈ �.

Hence, the coefficients ui and vi are not completely determined. In the package, we
choose: ui = 1 and vi = xi

/〈
Eαi

, Fαi

〉
.

2.2.2. Nonprincipal three-dimensional subalgebras. The exceptional (nonprincipal) classes
of three-dimensional subalgebras appear for the Lie algebras of type Dn and E6,7,8. The
defining vectors of these subalgebras are given, in the basis of simple roots, as f = ∑

αi∈� xiαi ,
where the coefficients xi are solutions of the system obtained from the corresponding
characteristic diagrams of figures 2 and 1, respectively. In these cases, theorem 4.2 of
[5] shows that if

� = {α ∈ �, 〈α, f 〉 = 2} (7)

then the defining vector of the nonprincipal TDS can be written as

f =
∑

α∈�

cαα (8)
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with some coefficients cα (not necessarily unique), determined by the conditions 〈α, f 〉 = 2,
∀ α ∈ �. Then the root generators, defined by

E =
∑

α∈�

uαEα F =
∑

α∈�

vαFα (9)

satisfy automatically the commutation relations (3), (4) and the commutator [E,F ] is an
element of h. The condition (5), that this commutator is exactly the Cartan generator H, has
the following explicit form
∑

αi∈�

xiHαi
=

∑

α∈�

uαvα〈Eα, Fα〉Hα +
∑

α,β∈N ,α �=β

uαvβNα,−βEα−β

+
∑

α∈�0,β∈N ,β−α∈�+

Nα,−β(uαvβE−(β−α) + uβvαEβ−α) (10)

where �+ is the set of positive roots, �0 = {α ∈ �, 〈α, f 〉 = 2} and N = {α ∈
�+, nonsimple, 〈α, f 〉 = 2} are disjoint subsets of � and Nα,−β are structure coefficients
of the Lie algebra, [Eα, Fβ] = Nα,−βEα−β . This system should determine the coefficients
uα and vα of the root generators (9). However, it is not clear which of these coefficients can
be chosen arbitrarily and we do not have a general method to solve the system (10), which is
nonlinear in uα and vα .

An explicit form of the generators E,F of type (9) is given in [5] for the nonprincipal
TDS of the exceptional Lie algebras E6,7,8. For the Lie algebras of type Dn, no explicit form of
these root generators is available in the literature, to our knowledge. Therefore, we present in
detail the construction of these generators, as they are considered in the Mathematica package.

2.2.3. Nonprincipal three-dimensional subalgebras of the Lie algebras Dn. The nonlinear
system (10) leads to a linear one, with the unknown vα if the coefficient uα are prescribed. The
problem is how to prescribe the coefficient uα such that the remaining system can be solved.
In this section we propose a solution of this problem in the case of the simple Lie algebra Dn.

Let � = {α1, . . . , αn} be the system of simple roots of the algebra Dn and f the
defining vector of the three-dimensional S-subalgebra of Dn−2r

n , given by the characteristic
diagram of figure 2. In this case, the set � defined by (7) splits into three disjoint subsets:
� = �0 ∪ Nβ ∪ Nγ , where �0 is the subset of simple roots of �, Nβ and Nγ are the subsets
of � consisting of nonsimple positive roots which can be written as the sum of two and three
simple roots, respectively. Taking into account the structure of the roots of the Lie algebra Dn

and the characteristic diagram of figure 2, these sets are

�0 = {α ∈ �, 〈α, f 〉 = 2} = {αj }j=1,...,n−2r−1 ∪ {αn−2s+1}s=1,...,r ∪ {αn}
Nβ = {

β
(1)
n−2s = αn−2s−1 + αn−2s , β

(2)
n−2s = αn−2s + αn−2s+1

}
s=1,...,r

∪ {
β

(3)
n−2 = αn−2 + αn

}

Nγ = {γn−2s = αn−2s + αn−2s+1 + αn−2s+2}s=2,...,r .

With this notation, the generators E and F have the following form:

E =
∑

α∈�0

uαEα +
∑

β∈Nβ

uβEβ +
∑

γ∈Nγ

uγ Eγ F =
∑

α∈�0

vαFα +
∑

β∈Nβ

vβFβ +
∑

γ∈Nγ

vγ Fγ .

To compute the commutator [E,F ] we take into account the following properties of the roots
of Dn, which essentially result from the diagram of figure 2:

(1) For all α, β ∈ �, if α − β is a root, then α − β ∈ J0 = {α ∈ �, 〈f, α〉 = 0}.
(2) If α ∈ �0 and β ∈ Nγ , then β − α cannot be a root of Dn, since if β − α is a sum of two

simple roots, then it is not simple and therefore it cannot be in J0.
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(3) If α, β ∈ Nβ or α, β ∈ Nγ , then α − β is not a root of Dn.
(4) The generators of Dn are normalized such that 〈Eα, Fα〉 = 1 for all root α.

With these properties we obtain

[E,F ] =
∑

α∈�

uαvαHα +
∑

α∈�0,β∈Nβ

β−α∈J0

Nα,−β(uαvβE−(β−α) + uβvαEβ−α)

+
∑

β∈Nβ ,γ∈Nγ

γ−β∈J0

Nβ,−γ (uβvγ E−(γ−β) + uγ vβEγ−β). (11)

The essential point in the construction of the generators E and F of the exceptional TDS
of Dn is that we can put to zero all the coefficients uβ, β ∈ Nβ , with two exceptions, u

β
(2)
n−2

and
u

β
(3)
n−2

:

u
β

(1)
n−2s

= 0 for s = 1, . . . , r for u
β

(2)
n−2s

= 0 for s = 2, . . . , r

u
β

(2)
n−2

�= 0 u
β

(3)
n−2

�= 0.
(12)

Moreover, we can also fix to 1 the coefficients of type uα and uγ :

uα = uγ = 1 α ∈ �0 γ ∈ Nγ . (13)

With this choice, which seems to us as simple as possible, the system [E,F ] = H is
solvable and there is only one generator F which satisfies it. In the rest of this section we
prove this assertion.

With the choice (12), (13), the root generator E becomes

E =
∑

α∈�0

Eα + u
β

(2)
n−2

E
β

(2)
n−2

+ u
β

(3)
n−2

E
β

(3)
n−2

+
∑

γ∈Nγ

Eγ

and, taking into account the explicit form of the roots of Dn, the commutator (11) is

[E,F ] =
∑

α∈�0∪Nγ

vαHα + u
β

(2)
n−2

v
β

(2)
n−2

H
β

(2)
n−2

+ u
β

(3)
n−2

v
β

(3)
n−2

H
β

(3)
n−2

+ Eαn−2r
N

γn−2r ,−β
(1)
n−2r+2

v
β

(1)
n−2r+2

+
r−1∑

s=2

Eαn−2s

(
N

β
(1)
n−2s+2,−γn−2s

v
β

(1)
n−2s+2

+ N
β

(2)
n−2s−2,−γn−2s−2

v
β

(2)
n−2s−2

)

+ Eαn−2

(
N

β
(2)
n−4,−γn−4

v
β

(2)
n−4

+ N
β

(2)
n−2,−αn−1

u
β

(2)
n−2

vαn−1 + N
β

(3)
n−2,−αn

u
β

(3)
n−2

vαn

)

+
r∑

s=2

Fαn−2s

(
N

β
(1)
n−2s ,−αn−2s−1

v
β

(1)
n−2s

+ N
β

(2)
n−2s ,−αn−2s+1

v
β

(2)
n−2s

)

+ Fαn−2

(
N

β
(1)
n−2,−αn−3

v
β

(1)
n−2

+ N
β

(2)
n−2,−αn−1

v
β

(2)
n−2

+ N
β

(3)
n−2,−αn

v
β

(3)
n−2

)
.

Therefore, the condition [E,F ] = H comes down to a system containing two types of
equations:

uαvα = cα ∀ α ∈ �0 ∪ Nγ ∪ {
β

(2,3)
n−2

}
(14)

where cα are the coefficients (8) of the defining vector and the parameters uα are fixed by (13),
and
N

β
(1)
n−2r+2,−γn−2r

v
β

(1)
n−2r+2

= 0

N
β

(1)
n−2s+2,−γn−2s

v
β

(1)
n−2s+2

+ N
β

(2)
n−2s−2,−γn−2s−2

v
β

(2)
n−2s−2

= 0 s = 2, . . . , r − 1

N
β

(2)
n−4,−γn−4

v
β

(2)
n−4

+ N
β

(2)
n−2,−αn−1

u
β

(2)
n−2

vαn−1 + N
β

(3)
n−2,−αn

u
β

(3)
n−2

vαn
= 0

N
β

(1)
n−2s ,−αn−2s−1

v
β

(1)
n−2s

+ N
β

(2)
n−2s ,−αn−2s+1

v
β

(2)
n−2s

= 0 s = 2, . . . , r

N
β

(1)
n−2,−αn−3

v
β

(1)
n−2

+ N
β

(2)
n−2,−αn−1

v
β

(2)
n−2

+ N
β

(3)
n−2,−αn

v
β

(3)
n−2

= 0

(15)
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which comes from the condition that the coefficients of the root generators in [E,F ] are
zero.

Part (14) of this system splits into two subsystems, which can be detailed as follows. The
first one,

vαi
= xi i = 1, . . . , n − 2r − 1

vγn−2r
= xn−2r

vγn−2s
+ vαn−2s+1 = xn−2s+1 s = 3, . . . , r

vγn−2s
+ vγn−2s+2 = xn−2s+2 s = 3, . . . , r

vγn−4 + vαn−3 = xn−3

decouples from the rest and can be solved to give vαi
, with i = 1, . . . , n − 2r − 1 and vαn−2s+1

and vγn−2s
, with s = 2, . . . , r . The second subsystem contains the last three equations of (14),

u
β

(2)
n−2

v
β

(2)
n−2

+ u
β

(3)
n−2

v
β

(3)
n−2

= xn−2 − vγn−4

uαn−1vαn−1 + u
β

(2)
n−2

v
β

(2)
n−2

= xn−1

uαn
vαn

+ u
β

(3)
n−2

v
β

(3)
n−2

= xn

(16)

which couples to the part (15) and must be solved together, with respect to the remaining
unknowns vαn−1 , vαn

, v
β

(1,2)
n−2s

, s = 1, . . . , r and v
β

(3)
n−2

.
The first equation of (15) gives v

β
(1)
n−2r+2

= 0. Recursive substitutions show that
v

β
(1,2)
n−2r+2

, v
β

(1,2)
n−2r+6

, . . . , v
β

(1,2)
n−2r+2+4k

, . . . are all equal to zero. The remaining equations,

N
β

(2)
n−4,−γn−4

v
β

(2)
n−4

+ N
β

(2)
n−2,−αn−1

u
β

(2)
n−2

vαn−1 + N
β

(3)
n−2,−αn

u
β

(3)
n−2

vαn
= 0

N
β

(1)
n−2,−αn−3

v
β

(1)
n−2

+ N
β

(2)
n−2,−αn−1

v
β

(2)
n−2

+ N
β

(3)
n−2,−αn

v
β

(3)
n−2

= 0

N
β

(1)
n−2s+2,−γn−2s

v
β

(1)
n−2s+2

+ N
β

(2)
n−2s−2,−γn−2s−2

v
β

(2)
n−2s−2

= 0 s = r − (2k + 1)

N
β

(1)
n−2s ,−αn−2s−1

v
β

(1)
n−2s

+ N
β

(2)
n−2s ,−αn−2s+1

v
β

(2)
n−2s

= 0 s = r − 2k

with k = 0, 1, 2 · · · and (16) form a system with unknowns v
β

(1,2)
n−2r

, v
β

(1,2)
n−2r+4

, . . . ,

v
β

(1,2)
n−2r+4k

, . . . , v
β

(2,3)
n−2

, vαn−1 , vαn
. The determinant of this remaining system is

[ r−3
2 ]∏

k=0

N
β

(1)
n−2r+4k ,−αn−2r+4k−1

N
β

(2)
n−2r+4k ,−γn−2r+4k

	

where 	 = −N
β

(1)
n−2,−αn−3

u
β

(2)
n−2

u
β

(3)
n−2

(
N

β
(2)
n−2,−αn−1

u
β

(2)
n−2

− N
β

(3)
n−2,−αn

u
β

(3)
n−2

)
, if r is odd or

	 = N
β

(3)
n−2,−αn

u
β

(2)
n−2

− N
β

(2)
n−2,−αn−1

u
β

(3)
n−2

, if r is even. Therefore, for an appropriate choice
of u

β
(2)
n−2

and u
β

(3)
n−2

the system (14), (15) has only one solution. In the package, we

choose u
β

(2)
n−2

= 1
/
N

β
(2)
n−2,−αn−1

and u
β

(3)
n−2

= 1
/(

2N
β

(3)
n−2,−αn

)
such that the determinant

of the system is nonvanishing if r is odd, but also if r is even, due to the property(
N

β
(2)
n−2,−αn−1

)2 = (
N

β
(3)
n−2,−αn

)2 = 1 of the roots of Dn (see [10]).

3. Decompositions of a simple Lie algebra with respect to three-dimensional
subalgebras

Decomposition of the Lie algebra g with respect to a three-dimensional subalgebra SL2

usually refers to the decomposition of its adjoint representation as a direct sum of irreducible
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representations of SL2. This decomposition is related to the eigenvalues and eigenspaces of
the adjoint application adH of the Cartan element of SL2.

Our goal in this section is to construct a basis for the Lie algebra consisting of eigenvectors
of adH which have to satisfy additional constraints, similar to the commutation relations of
the modes of primary fields. The basis obtained in this way is called the decomposition of g
with respect to SL2 and is of great interest in two-dimensional conformal field theories.

We consider first the three-dimensional subalgebra {L−1, L0, L1} of the Virasoro algebra,
with the generators {Ln}n∈Z:

[Lm,Ln] = (m − n)Lm+n. (17)

This subalgebra is isomorphic with the Lie algebra SL2 and we identify the generators
L0 = −1/2H,L1 = −E, and L−1 = F . Then, the defining vector of this subalgebra is
f0 = −1/2f , the element associated with the generator L0.

Then, we complete this basis to a basis of g, adding the so-called spin generators, Ws
m,

which satisfy the commutation relations of the modes of primary fields:
[
L−1,W

s
m

] = (−(s − 1) − m)Ws
m−1 (18)

[
L0,W

s
m

] = −mWs
m (19)

[
L1,W

s
m

] = ((s − 1) − m)Ws
m+1. (20)

These generators are labelled by two indices: a spin index s and a spin projection index
m = −(s − 1), . . . , s − 1. The construction of the spin generators presents several steps.

Step 1. First we must determine the spins of the decomposition. Equation (19) shows that
the values of the spin projections are the eigenvalues of the operator adL0 . These eigenvalues
can be calculated directly. An optimal alternative is to use the defining vector f0 of the three-
dimensional subalgebra. Then, the eigenvalues of the operator adL0 are given by the scalar
products 〈f0, α〉 of this defining vector with all the roots α ∈ � of g, to which we must add
the eigenvalue 0, with the multiplicity equal to the rank of g.

Hence, in this set of eigenvalues we must identify all the spins of the decomposition,
each one with its sequence of admissible spin projections. We denote by S the set of spins
of a decomposition. In this set, we always consider the first element to be the spin 2 of the
three-dimensional subalgebra and the others are put in decreasing order.

Step 2. For each spin s we determine the generator with minimal spin projection: Ws
−(s−1). In

this case, equations (18) and (19):
[
L−1,W

s
−(s−1)

] = 0 (21)
[
L0,W

s
−(s−1)

] = (s − 1)Ws
−(s−1) (22)

show that the generator Ws
−(s−1) is an element of Ker (adL−1

)
⋂

Vs−1, where Vs−1 = ∑
α∈�s−1

gα

is the sum of the invariant root subspaces, corresponding to the roots:

�s−1 = {α ∈ � | 〈α, f0〉 = s − 1}.
The space Ker (adL−1

)
⋂

Vs−1 is one-dimensional only for those spins which are not
multiple. However, there are many decompositions of Lie algebras which present several
spins with the same value, such as for example, the second decomposition of SL3, which has
the spins {2, 3/2, 3/2, 1}. In these cases the dimension of the space Ker (adL−1

)
⋂

Vs−1 is
equal to the multiplicity of the spin s. The generators of minimal spin projection, Ws

−(s−1), are
taken to form a basis of this space.
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To avoid confusions in the notation of the generators W , which can occur in the cases of
multiple spins, we have added, as an upper index, the position i of the spin in the set S of spin
values: Ws

m
(i).

Step 3. Finally, successive applications of equation (20) allows us to determine all the
generators Ws

m with m = −s + 2, . . . , s − 1, for each spin s. Note that the conditions (18) and
(19) are automatically satisfied, at each iteration, due to the Jacobi identities.

4. The Mathematica package Decompositions.m

The theoretical aspects concerning the three-dimensional subalgebras of the classical
simple Lie algebras, discussed previously, are implemented in the Mathematica package
Decompositions.m. In this section we present this package and we give some guide lines
for the users.

This package uses another Mathematica package [4] SimpleLieAlgebras.m and
therefore, both have to be placed in the same directory, called LieAlgebras. These
packages are available as a zipped archive LieAlgebras.zip, by e-mail from the authors
or at http://www.cpt.univ-mrs.fr/∼garajeu. The archive has to be decompressed into the
home directory or into the subdirectory AddOns/Applications of the standard Mathematica
distribution.

The package has to be loaded before using any of its symbols:

In[1]:= �LieAlgebras ‘Decompositions’

Loading the package a second time will clear all previous definitions of symbols and all stored
intermediate results. One can have the list of all symbols and functions provided by the
package, using: Names[‘‘LieAlgebras‘Decompositions‘*’’], as well as a description
of each function, using ?nameoffunction.

After loading the package we have first to give precisely which Lie algebra we are working
with:

In[2]:= SetLieAlgebra[’’type’’,n]

This command fixes the settings of the problem, namely: ‘type’ is a string giving the
type of the Lie algebra and n an integer giving the rank of the Lie algebra. This command
calls a function of the package SimpleLieAlgebras.m, which initializes the Cartan–Weyl
generators and the structure coefficients of the Lie algebra.

At this stage all the symbols and functions provided by the package are available, as well
as those of the package SimpleLieAlgebras.m.

The package is thought up in two parts. The first one deals with theoretical aspects
of section 2, to establish all the possible three-dimensional embeddings for the chosen Lie
algebra. The second part follows section 3, to determine the structure of the Lie algebra
decompositions.

4.1. Regular subalgebras and three-dimensional embeddings

Two main functions were defined to implement the algorithmic procedure described in
section 2.1, for the construction of all TDS for the selected Lie algebra.

MaximalPiSystem applies step 1 of the algorithm to construct all the maximal pi-systems
and the corresponding maximal regular subalgebras.

The function MaximalPiSystem[options] returns the list of all maximal pi-systems
for the selected Lie algebra. Each pi-system is given as a matrix, having on the rows the
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Euclidean coordinates of the roots. If the option Diagrams->True is given, this function
gives a list of the maximal regular subalgebras associated with the maximal pi-systems and it
draws their Dynkin diagrams.

In particular, this function gives the maximal pi-systems, which in table III of [9] are
listed for Lie algebras up to rank 6, only.

AllDecompositions determines all the nonmaximal pi-systems, applying step 2 of the
algorithm discussed in section 2.1 and all the TDS of the Lie algebra.

It prints the list of all decompositions and, for each of them, the following information:
the defining vector (Euclidean components), the spins, the roots which form the pi-system and
the regular subalgebras containing the three-dimensional subalgebra.

The function AllDecompositions also gives the list DecompositionsList of all
decompositions of the Lie algebra. Each ith component of this list has six components
which characterize the ith decomposition:

(1) Euclidean coefficients of the defining vector of the ith decomposition,
(2) spins of the ith decomposition,
(3) roots which form the pi-system of the ith decomposition,
(4) list of the equivalent pi-systems,
(5) equivalent defining vectors corresponding to the equivalent pi-systems,
(6) labels attached to the characteristic diagram of the ith decomposition.

Several additional functions were necessary to realize this algorithmic procedure.

ListofSpins[defvec] gives the list of spins of a decomposition characterized by a
defining vector defvec. In this list, the values of the spins are arranged in decreasing order
except the first one, which is fixed to be the spin 2 of the three-dimensional subalgebra. The
variable defvec is the defining vector of the TDS, in Euclidean representation.

MinRoot[ps] computes the minimal root of the root system of the Lie algebra, with
respect to the pi-system ps, as defined in step 1(a) of section 2.1. The matrix variable ps is a
pi-system of roots, in Euclidean form.

SimpleRoots[defvec] selects, in the root system of the Lie algebra, the set of positive
roots with respect to the vector defvec and gives those which are simple. The result is a list
of these simple roots, in Euclidean form.

DecompDefVector[i,options] gives the defining vector for the ith decomposition, as
a list of its coefficients in the basis of simple roots of the Lie algebra. This function allows
us to compare our results with those of [9], table VI. If the option EuclidForm->True is
chosen, the defining vector is given in Euclidean form.

DefiningVectorPisystem[ps] gives the list of the Euclidean representations of the
defining vectors associated with a pi-system ps. This list contains one defining vector, given
by (6), of the principal TDS of a Lie algebra which has ps as a system of simple roots. If ps
is a system of simple roots for a Lie algebra of type D, then this list contains several defining
vectors: one for the principal and one for each nonprincipal TDS. The variable ps is a matrix,
which has on the rows, the Euclidean coordinates of the roots which form the pi-system ps.

ConnexPart[ps] gives the list of the connex parts of the Dynkin diagram of a pi-system
ps.

OrderedRoots[cps] gives the list of the roots of a connecting part cps of a pi-system,
in Euclidean representation, ordered as they appear in the Dynkin diagram.

Several graphical functions are also available. They are useful to compare our results
with those of [5], tables 13, 16, 17.
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CharactDiagram[i], which gives the characteristic diagram of the ith decomposition.
ShowDiagram[ps,listlabel], which draw the Dynkin diagram of the regular

subalgebra, having the pi-system ps as a system of simple roots. The argument listlabel
is optional and contains the labels attached to the diagram.

4.2. The structure of a Lie algebra decomposition with respect to SL2 embeddings

SetDecomposition[i] fixes the symbols DefVect, Spins, PiSystem to the corresponding
values of the ith decomposition of the Lie algebra given by the function AllDecompositions.
It also computes the generators and the structure coefficients of the ith decomposition.

Once the decomposition i is fixed, the following functions, concerning this decomposition,
are available.

Spins is the list of spins of the decomposition. In this list, the values of the spins
are arranged in decreasing order except the first one, which is fixed to be the spin 2 of the
three-dimensional subalgebra.

DefVect is the defining vector of the decomposition, given as a list of its Euclidean
coordinates.

PiSystem is the pi-system of the decomposition. It is given as a matrix, having on the
rows the Euclidean coordinates of the roots of the pi-system.

W[k,s,m,options] gives the generators Ws
m

(k) of the chosen decomposition, as a list
of their coefficients with respect to the Cartan–Weyl basis. Ws

m
(k) is the generator of spin s

and spin projection m and k is the position of the spin of value s in the list of the spins of the
decomposition. This variable serves to distinguish between generators with the same value of
spin, in the case of decompositions with multiple spins. If the option BasisElement->True
is chosen, these generators are given in matrix form.

PrintWGenerators[options] prints the generators of the three-dimensional
decomposition in matrix form. If the option InternalForm->True is chosen, these
generators are given as lists of their coefficients with respect to the Cartan–Weyl basis.

DecompGenList prints the list of generators of the decomposition.
DecompStr is a three-level list containing the structure coefficients of the three-

dimensional decomposition. This symbol is computed by the internal function
DecompStrConst, called by the function SetDecomposition.

DecompCommutationTable[] prints the commutation table of the Lie algebra in the
chosen decomposition. DecompCommutationTable[{l1,l2},{c1,c2}] prints only the
part of the commutation table between rows l1 and l2 and columns c1 and c2.

Some of these elements, which characterize the decompositions of the Lie algebra, can
also by calculated directly, without fixing the decomposition with SetDecomposition.

DecompLGen[i,k] gives the three Virasoro generators Lk of the three-dimensional
subalgebra, for the ith decomposition. They are given as a list of their coefficients with
respect to the Cartan–Weyl basis. The values of k = −1, 0, 1 correspond to the generators
L−1, L0 and L1, respectively.

DecompGenerators[i] computes the generators W[k,s,m], of spin s and spin projection
m, for the ith decomposition of the Lie algebra. They are given as a list of coefficients with
respect to the Cartan–Weyl basis.

In the package Decompositions.m, some other more general functions, which
could be useful, are also defined, as internal functions. For example, the function
SpecialInverse[n,m] is an optimized function which gives the inverse of a particular
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square matrix m, which can be put in a three-block diagonal form by the function
ToBlockMatrix[n,m].

5. Conclusions

In this paper we have presented a Mathematica package which performs the decompositions
of classical simple Lie algebras with respect to SL2 subalgebras. The package allows us to
determine the regular subalgebras and the classes of three-dimensional subalgebras (principal
and nonprincipal) of all simple Lie algebras of types A,B,C,D,F4 and G2.

The user can access the structure of any Lie algebra decomposition (generators, structure
coefficients, spins, etc) and can use these elements in his own calculations.

This package could still be developed in order to eliminate some of the limitations of the
current version. For Lie algebras of high dimensions, several optimizations of the program
could be necessary, concerning the memory usage and the time of calculations.

The program has important applications in several branches of mathematics and theoretical
physics, such as for example in extended two-dimensional conformal field theories.
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